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U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Italic Transliteration
A a A, a

5 ¢ B, b

B vV, v

r G, g

a2 9 D, d

E ¢ Ye, ye; E, e®
X x Zh, zh

3 2, z

H u I, 1

A Y, y

K «x K, k

1 a L, 1

M u M, m

H » N, n

0 o 0, o

n n P, p

#ve initlally, after
When written as & in

Russian

sin
cos
tg
ctg
sec
cosec

b

ki aae it b

vowels, and after v,

Block Italic Transliteratic..
Pop P »p R, r
Cc ] S, s
T T m T, &
Yy Yy v U, u
T o ® ¢ F, [
X x X x Kh, kh
duy u vy Ts, ts
How Y « Ch, ch
U w W w Sh, sh
U w o Shch, snch
b s D s "
H & w Y, vy
e s b !
33 9 E, e
LV L » Yu, yu
R A A a Ya, ya
b; € elsewhere.

Russian, transliterate as y& or &.

RUSSIAN AND

English

sin
cos
tan
cot
sec
cse

ENGLISH TRIGONOMETRIC FUNCTIONS

Russian

sh
ch
th
cth
sch
c¢sch

Russian

rot
lg

English

sinh
cosh
tanh
¢oth
sech
¢sch

English

curl
log

Russian English
arc sh sinn_
arc ch cosh_~7
arc th tann_=<
arc cth coth_T
arc sch sech_7
arc csch ¢sch
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CORRECTIVE ARITHMBTIC CCDES IN THE RESIDUAL CLASS SYSTEM

S B. Payn

Designations. We will use Latin and Greek letters to designate
vhola numbers, ps;s Pa2s eees P, - Prizme numbers (sometimes reciprocal

prime numbers in pairs),

P=pnprds...bm I)‘:T}.’-, Qivg=pLr... 0

Q,gly R"P"'P‘-{—l"'p"'_ “.-'—:'ly 2, ...,"),

v, - the group of remainders of reciprocal prismes with modulus /i, IT

- ths group of remainders of reciprocal primes with modulus P.

Purther designaticns will be introduced in the appropriate

place.
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§1. Representation of Nuaspers in tae Residual Class Systea

Let 0‘§ A <P, ay, G254 ecey @y~ the ssallest nonnegative
remainders of number A with aoduli of p,, Pas eess Pps L@SpPectively.

We will call ths expression

A S(ZU 13,...v“!;) (l)

the representation of number A in the residual class systean

{(abbraviated SOK).

The nuabers p;, P;, vees, pPp are called the bases of the systea,
and the numbers a;, @3, <<ey a, - the nuabers of the given

representation vith moduli pgyys Fzs ec+¢ Pn, Cespectively.

Tha vhole nusbers in the range [o, P) and representations

(1) are in a one-to-cne correspoandence.

Actually, the resmainders frca division by the given numbers
Pis P2s eees Py ars uniguely defined, on one hand, and on thae other

hand, ve knowv -that the gsystem of comparisons

rEx(modp) ((=1,2,...,n) (2)

g . vty AT

I
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has the unique solution

x=d(mod P}, o< ALP, ()
vith reciprocal prime nuabers p,;, E2¢ «ses Ene

Remark. If the nuamkter A satisiies the inequality

c=A<R, (4)

it is uniquely determined by the remainders for the moduli
Pis Pivys ..y Pne Therefore, with ccndition (4), along with

representation (1) we can write

A= (zl'l Ziggr con Cn)u (4')
Analogously, with the condition
[o) ;\ A < ,Pl or O'.f.._:_A<Qn-l+1 ’ (S)

ve can write

A= (% &y ...y Zings Bigqr een s %) (6)

or

A= (“b Loy ovv 3n—i)' (-6,)

TP e i -
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Unlike the positicn system, the arithmetic operations in the
residual class system are perforsed step-by-step. Thus, if
A = (%, %y .. %),
B = (3, 30 ... , 3
are the representaticns c¢f nusoers A and B in the SOK, then if ve
consider 5“334 and #rg to be the smallest ncnnegative resainders of
thess numbers for the moduli ; (i=1,2,..,n) the nusbers A &£ B and

AB can be represented as

A B (2 +3, % =3, ...0 % £ 3u)

AB = (‘& ° ;5‘\ “, . 3,, vse ¥ Gnﬁn)'. (7)

This assertion is a direct result of the fact known froa number

theory that from

A= %4 (mod p;), B = 3 (mod/’.-) (i =1, 2,.. ' 1)
it follows that

A+B=a+5, A-B=wd (modp)
(i'—"' 1y 24 ...'”)'

Obviously, if ve A0 not make certain limitations, the results cf

(7) of the execution of aritnmetic operations in the SOK are only

PR g e e e v Do

S~ e e—
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obtained wvith precisicn down to tna teras wvhich are multiples of P.

o3 IR IR R < o

Now we will consider the possibility of performing division

operations in the SOK:

We know that the classes of remainders of raciprocal prises with

the prime modulus p; fcras, by multiplication, a finite group r_, of

R O R R e R T .

order p;, - 1. The numbers 0, 1, 4, ..y Pi =~ ' can be used as the
representations of this group. If we consider representation (1) with
the condition a #0 (1 =1, 2, «ese D), these representations also

form, by multiplication, the finite group N, vhich is the direct sum

s BRI T e

of tha groups »;, ¥3, eeey ¥, GCDvViously, the order of group W |is

sgqual to

?(P) = (r—1) Pi— 1) - (P — 1),

vhere #(P) is the Buler fuaction.

E-
|

It follows froa tte aforementioned that if ve liait ourselves to
elements of group 7T7, i.e., represecntations (1) do not contain

zeroes, division can be carried cut in the SOK step by step.

Let A and B be elements of group IT, and

-
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.,...-.
SO PRIV SO P Moy A7 2 8 4Ry 5 5

A-(“],’ a’, ...,z,,), “‘#:0

s (i=12..,
B == (31! p” vee pn)' )3‘ * [¢] ’z) él
1 3
- thair repressentations in the S0£. The ratio A/B vwill be assigned &
the value ¢
4 ;
_B— =Yy Yvr...:¥n) (® i
;
E
vhere 7y . (i =1, 2, +eee n) are deiined as the solutions of the §
comparisons Z
T‘ = i (mod P.’) (i = [, 2, ..., »). '
8 F
These coaparisons also cnly have unique solutions when 8, # 0, while s
@, can alsc assume the value 0. Therefore, we can eliminate the ;

&

limitation a; £ 0.

Two cases are possitle:

1) the number A is evenly divisible by B; in this case, é

representation (8) gives the true value cf the fraction A/B.

2) the number A is not evenly divisible by B; im this case, ve ' ;

vill call representaticn (8) the formal representation of the

fraction A/B (sea [2]).
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Representation (8) yields a certain whole nuamber C in both

cases. In the first cas¢, ve nave C = A/B, and in the second -

c = Bi (mod P).

3

We vill consider the casa whan A is evenly divisible by B, but %
there are zeroes in P . Suppose, for example, that p; = 0, where i is %
fixed. Then it fcllovs froa the divisibility of A by B that 4 = 0, g
as well. Thus, vith step-by-step division in the i-th step of 3
reprasentation (8), the undsfined value 0/0 is present. In this casae, i
since, obviously, A/B < P;, tae number C is determined by the %

representation

C - (Yl’ Tar voor Yiets ?H.p:.. ’ Yn)

RSN B Tow T U

(see (S5), (6)). The prcblem of finding the numbers 7y, vill be solved

in the next section.

s

Later we vill give examples illustrating the possibilities of

using formal representaticns ¢f the fractions.,

Now vwe will consider a method of representing negative nuabers

a1 in the SOK.
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As we already pointed out, the set of representations (1)
uniqualy defines the nuakers in the range [0, P)., Je will divide this
ranpge into two parts [0, B/2} and (P/2, P). We will call thes the
first and second halves c¢f tha given range, respactively. We will
stipulate that the numbers in the first half are consiﬁered to be
nonnegativa, and tha nuabers in the second half - negative. Here the
nuabers in the first half are acmologous. We will aquate the pumber A
in the second half to the negative number A - P, Obviously, the set
of all negative numbers fills the range (-P/2, 0) when P/2 < A < P,
We will assign the representation of the number A = -|Al in
supplementary code. More preciseiy, if A = (a;, @z eee, ay)

0 £ A <P/2, then -A = (F, = @3, P2 = 24 <vey Pn = &y). This
rapresentation is saquivalent to the number P - A, whichbelongs to the

second half of the range (0, E).

Thus, we can speak ¢f a one-to-one correspondence between the

sat of representations (1) and the numbers in the range (-P/2, P/2)1.

Pootnota: 1We will point out that P/2 ramains outside the

consideration vhen P is even. End footnote

If the representation (a3, @z, «eecy ap) is given, it suffices to
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deteraine which half of tae range [0, P) this nusber belongs to in

order to establish the siygn of the nuaber which it represents.

Now, having defined the rational operaticns on the relative

mabers in the residual class system, we can state the theorea.

Theorem 1, If the inequality

ifxamn...) <

"”’c

’ (9)

holds for the rational integer function f(x, y, Z, ...) with rational
coafficients (although they have a formal representation in the SOK)
in a certain range of ckanye in the variables, the values of this
function for the indicated values c¢f tha arguments are calculated the
same in the SOK, if we consider the results of the calculations to be
the absolute least remainder with respect to modulus P. Here there

are no values which would msake the intersediate results go outside

the range [0, P/2).

Por the proof it suffices tc note that if we ccmpare the resuilt
of calculating the raticral integer function in the SOK with respect
to modulus P vwith its aktsolute least remainder, this absolute least
ramaiader also gives us a single value of the function in the

assigned range,
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We vill consider an axamgle illustrating the calculation of an

integral polynoaial in the SQK.

Examaple 1., Let the rases of thae systea be p, = 3, pp = 5,

E3 = 7, pe = 11; thean F = 1155,

We will calculate the value cf the integral polynomial

e
<)
X

Fl)= =5t~ 2

- -

{ In the decimal systea, tae calculations give us £(13) = 104, so

that condition (9) of theorem 1 is satisfied.

We will write the represeatactions of the numbers upon which ve

vill operate: x = 13 = (1, 3, o, 2),

1 1 1 1 1
- (? YT ?) = (2,3, 4,6) (formal representation)

5= (2' 0 5 5)1

—3=(1, 0, 2, 6) {(surplementary code)

23 (2, 3, 2, 1)
+ -—;— = '(m" (1, 4 1, 6) (fcrmal representation)
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23

2

= (2, 1, 6, 5) (supplemaentary cods).

#e vwill perfora the following operations in succession:

’ l) x3=‘-’ (33=(13, 33, (33| 23)=(I) 2, bl s)

(here the result exceeded the limits of the range [0; 1155),

2)%-\" (20 3, 40 6) (1,2, 6, 8)= (2,1, 5, 4)
(here we obtained the fcrmal representatiom for the fraction
133/2)

S) —'sz -z([, 0, 2, 6)‘\’12» 35 62' 22) =

=(1,0,2,0) (1, 1, g =(1, 0, 2, 2),

-

J .
X = (2v I, 6' S).(lv 3 6| 2)'= (27 3y I, 1OY

ot
-

1) —

(ve also have the formal representation here)

1 2
S)———z -yt — 23

X =

(2, 1, 50 4)
+ (1, 0y 2, 2)

(2, 5. 1, 10)

(2, 4v 6, 3) = oy

The same result as in the decimal systea was obtained.

§2.Conversion of Numbers from the 5esidual Class Systeam into the

I

.-i .
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Position System and Back

In order to convert numbers from the SOK into the position
systanm, A, Svoboda [ 2] rtecommends tha following method, called the

sethod of crthogonal btases.

Assume that the bases of thd system of SCK Py, Par eees Dpn are
assigned, We will calculate tae values (in the position system) of

the nuabers

B, = (1, 0, 0, ..., 0),
By =(0, 1, 0,...,0),
By = (0, 0, 0, ..., 1)4

in advance. The numbers E,, B,, ee., B, are called orthogonal bases.
If A = (€39 eees @) is the representaticn of the number A in the
SOK, in order to find its value in the positicn systeam, it suffices

to calculate the expression

.\'-le1+128,+"'+¢an° (10)

Obviously, A ¥ x(mod P).
If ve search for the nuamper A in the range (0, P), obviously

‘~l=-\'—"A'P' 'her‘ f,l=[i].
P

TR TR R T

TR T T
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pr: v

According to I. Ya. Akushkiy, tné aumber rg is called the rank of the n

nanber A. 5

de vill consider an exasgle.

Exaaple 2. We will ccnsider the bases of the system to be the

same as in exaaple 1.

Then B, = 385, B, = 231, By = 330, B, = 210.

Let A = (2, 8%, 6, 5); then

x = 2385 4 4-251 4-6-330 + 5.210 = 4724 1

r,-[ﬁzi]=4. A= 4724 — 41155 = To4.
1155

The advantage of the method of orthogonal bases is the

simplicity of equaticn (10).

de will consider the jeneralized position systea (systea 0PS) !,

in vhich the n~-step number A is represented as

A=a, 48,0, + anCn ()

vhere

Qs
Q

=Pl; Q1=X, (1‘ I, 2, ...)n).
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Pootnote: ! A, Svoboda [2] calls this systes a systeam vith a sixed

base. End footnote

Then it follows from (11) that

A=0,Fayp, 4 a3y 0 -+ BaPyPa " Puey;

the nuambers p,¢ Pzs «s«s» Pn aTe the basas of the generalized position

systen.

If ve also assume here that the numbers a, are the nuabers
0, 10 2, ¢eep Py = 1, tne voluae of the range of numbers represented

in this system is equal t0 P = pP; eee Pne.

It is obvious that tne ordinary positicn system is obtained froa
the genaralized systea if we set

LG
0

=P'Ql=l(‘- L2..,n—1),

wvhere p is the base of the ordinary position systes.

The procedure of successively obtaining the values of the
numbers in the correspcnding representations can be realized by the

following process:
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1) A is divided by p,: this gives us {A/p,] = A, and A - A,p, = A,
2) A, is divided by pp: this gives us [Ay/pap] = A and Ay - Azpr = 2,

i) A,.y is divided by p.; this gives us [A;_./p ] = A and 12)

M-t = AP = 3,

LR AL R L BN BLIE I B B BN B A BN I B AN BN N B A N N B I BN N BN NN NI

8) Ap.;: is divided by f,: tnis gives us [A,_ ;/Pa) = 2, and

"‘-| = AaPy = A,.

Let the numbers p,, Pz, eees F, SOTVEe as the simultaneous bases
of the SOK and the OPS [generalized position systes]. We will nuaber
the steps in the SOK and the OPS ia the same crder vhen the intervals
of the change in the nusters of the steps with the same values

coincide.

We will vrite the represeatation of the nusmber A in the OPS as




o

poc = 1000 PAGE 1o

follovs
A - [aly a’) see ? a”]’ (13)

The ranges of the nuabéers uniquely represented in the systeas
SOK and OPS thus constructed obviously coincide. Therefore, ve can
speak of a one-to-one correspondence betveen the sat of
representations (2) cf numbers in the SOK and the set of
representations (13) of pumbers in the OPS. The problem consists of

establishing the process of realizing this correspondencs.

We vill show that alyorithm (12) can be successfully used to
convert the representaticn of nusbers from the SOK into the OPS,

vhereupon the entire ccanversicm prccedure can be realized in the SOK.

Actually, the comparisons belcw follow froam equations (12)

4= ay (mod P;)y 0= ay <Pp
A= ay (mod p,), 06, < P

'4"—1 =a, (mod Pu). O § a, <Puv

vhere a,, a3y e+, 2y ar¢ the digats of the CPS. Thus, the problea of
finding the digits of the OPS is reduced to finding the remainders of
the numbers A, Ay, Ay, eve Ane.; according to the moduli

Pite P2s e¢eee¢ Pme rospectively. This problem is realized in the SOK as
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follous: let

Ad = (a]_! “21 ool “u)

be the represented nuakers A ian the SOK and

Pl <P3< e <pu’ (l.})
1) obviously, A ® a; (mod f;), which means that a; = a;;

~Il: A—a

2) the integer obviously satisfies the condition

b
A; < Ry; therefore (see (4), [4']), it is deterained by its last
{(n - 1) numbers of representaticn in the SOK. We vill calculate these
numbers in the SOK
A—a

I

=(20), aff!, ... &),

4, =

vhere

alp = -L;i‘ (mod p), +=123,..,n,
E 1

vhich means that
2, = a; (15)

3) analogously to akove, we will obtain

Ay — ay
2

4, =

== (ﬁ(;", z(;’), cees z(:) )

vhere

e

4
5

&
¥

T DRI T TN e SN T g
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i
0y — i i
a= E T D (nod p); F= 34 e o .
. :
vhich means that H
o = a, i
o & 2 e e . » ® ® @& ® 3 & . e e s LI ) i
Adiyy — a :
i+1) A; B T o (2, al,, ..., 2, ¥
b :
vhere L
¥
Gi=1) . . H
Zipa = Tim — G (mod pigs): #=1,2,...,n—3 ;

vhich means that

T

“(.‘;-x = digt (15)

e o & o+ e

T SR, 0% YT,

n) finally

Aneg — % -
2ol = (Y

pn—l

Au-x’

and

e o 1L g e

8y = z(:"fl o

Thus, wve obtained all cf tne values of the representation of the

puaber A in the OPS.

If ve elisinats ccndition (14), the process is somevhat

coaplicated because it béccmes necessary to ccnvert the values of the

OPS obtained into the sCK.

b Sataie )
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As vwe can see, the conversioan process can bs realjzed in the

arithaetic unit operating in the SOK systen. 2

de will consider the opposite problem. Suppose that we know the

representation (13) of tha number A in the CES. It is necessary to

tind its rapresentation in the SCK (7).

de will consider that we kncw the representations of ths nuabers

Cie Q20 cees Qp in the SCK. Specifically, let

Q =(n1..,1)
.= (0, Q% ..., Q%)
Q;=(00, Qi ..., Q)),

Then it follows from formula (11) that the values a;, a3y, eeepo @, CaARD

be found from the cosparisons

al(m‘)d 'P|)o.
a, + a, Q} (mod p,), {16)
%3 = 8, + a, QF + a; Q3 (mod p,),

....... * + s 8

&uZay+ 0,004+ - - an Q3 (mod ).

Obviously, these calculaticns can also be realized in the

arithaetic unit operating in the SOK.
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If we consider the numbers a;, @z, ««., a, in systam (16) to be
knoun, the solution of this system gives us the values

al' a!’ cseeyg a“.

#e will consider =cse examgles.

Example 3. We will coansider the basaes of the systeam to be the
same as in axample 1. Again, let A = (2, 4, 6, S5). We will find the
reprasentation of this auaber in the OPS. Obviously, vwe will have
Ci =1, Q2 =3 = (0, 3, 3, 3), C3 = 35 = (0, O, 1, 8);

Qs = 3eSe7 = 0, 0, 0, 6).

7e will successively find the digits of the OPS according to

systea (15).
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1) 8y =@ =2
(2, 40 6, 5) — (2. 2, 2, 2) - (© 2, 4, 3) -

2)A1=
3 3
_(,2.4.3)=(,2+2.5 ,4+2‘]_,i)_
3 3 b 3
=(,4 6, 1) a,=4;
4 6 =\ 4 4 {,0,28
3)A2=(4 D=—(r4 4 4) ([, 0 )
5 ]
(» »29 =.( 24 4.7 8+ 2.11 )
5 G 5 5
=(v '6: 6). a3=6; ‘
? 16v6‘—’ '] ,6,
4) Ay = ( )II( 6) =(, ,0,0)

a, = 0,
Thus, the representaticn of the OPS has the fora
Am=[2 4 6 0)=2+ 4.3 4+ 6.15 1+ 0.105 = 104

We will conduct the opposite prccedure, i.e., we will find the

representation of the numpber a4 = (2, 8, 6, 0] in the residual class

systeam. According to systes (16), ve will oktain
A= (20 24 4-3) 243461, 244.346.4+0.6) = (2, 4, 6, 3)-
Tha method found fcr coaverting the representations of the

nusbers into the OPS from the SCK and back can be used for performing

ope:ations of comparing nusbers in the arithmetic unit operating in

the SOK.
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In order to perfora the operation of coaparing two nuabers A and
P assigned in the SOK, it suffices to convert these numbers into the
OPS, then compare the values ot the representations obtained, going
from the higher-crder digits to the lowsr-order ones (in our )
designations, froam right to left). If A > B, the first nonzerc

difference in the values will be pcsitive, and vics versa.

e already pointed cut that when performing operations cn

relative numbers, the grcbles cf determining the sign of the nuaber

is reduced to determining which cf the two halvaes of the ramnge [0, P) =
the number belongs to the first [0, P/2), or the second (P,/2, P).
This problem is solved by compazany this representation vith the

representation of the rusoer {Psz). (For a fixed system of bases, the

representation of the rusder [{B/2] can be stored in the meamory of

both th2 SOK and the QES).

The problem of whether the number A, vith representation (1),

belongs to intervals [0, Q;,1)s 4 =1, 2, ¢ee, D =~ 1 is also

interasting. In order tc solve this problea, it suffices to ckttain

the representation of the nusber A in the OPS (13). The following

results are completely ctvigus:

vhen a, =0, ve vill have 0 g A < Q,
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vhen &Be=ad._, =:''=ay ;=0 we vill have 0 § A < Q,_; - (17)

In §1, wvhen considering the pcssibilities of performing the
operation of division in the SOK, we noted the case when A is divided
evenly by B, but the nusters of the representation of B also
contained zero nuambers. It was shouwn that in this case, the quotient
C is determined by the digits which do not contain the undefined
value 0/0. It is necessary to reveal these undefined values in order
to subsequently perfcrm cperaticns with whole-nuaber representations.
Obviously, in order to do this it suffices tc find the remainders of
the nuaber C with respect to tne mcduli c¢f thcse digits in which this

indeterninancy exists.

We will describe cne possitle method of solving this prcblea in

the SOK.

Suppose the undefined value 0,0 is present in the digits for the

moduli pg (1 = 14, i2¢ cee, i4). Ift wve designate

C= 3 see y v i v D o -
(Yl ?"n—“ o | ti+r? (i,—t’ o ""H-I ETTS ) '.'n) ' (18)

the problem consists of finding the numbers Yﬁ'Yﬁ"“'YG'

In order to find these numkers, we will cocnvert tha

L RPN 2O o

“

Qe o Sy g W MUY
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(n - k)-digit representation (18} into the OPS with the bases

Pl' pl) LX) .Pi|~l‘ P"]‘T" ? eee P’-k_” 'p‘.k"‘l T eea )Pu-

- D s i e

We will obtain

C = [(". Y eee ¥ ("’_” (:-'+‘ Y vee s e"k—x’ (-‘.‘..:-“ ceey ("] =
=c'l+{,‘b1+ +€i|§-x/,l'lb1 P:',-r'*‘ _:_
- rwprty - Piy—t Pijey ooi Preyg

Je will assume that we know the representations for the moduli
Pis P2¢ eess Py in the scCK:

pr = (0, pL, phs ... 4 A7)
P: = (P;' o, piv ceed P::

Pn = (pg\) p:&v -..P:-l, O)-
Then the unknown digits can be fcound from the comparisons

VNEgbeop+ b i P+ (mod p) (19)

i - il’ i’, con 3 ih'

Here it can become necessary to ccnvert the digits of the

repesentation of the generalized pcsition systes into the SOK.

These calculations are simglified if we have representations in

the SOK for all possible products comprised of the assigned acduli

and taken one by one, twc by tuc, etc.
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The conversion cf the crepresentation of a number from the SOK

into the OPS can be realized by tne methcd cf orthogonal bases.

Pirst, ve will point out that the operation of adding numbers in

the OPS is done in the same way as in ordinary position systeas: by

RN )

the successive addition ¢ the rcumpbers, fros smaller-order to

-t

bigher-order, with the crdinary cperationm of inter-digit carryover,

if tha result of additicr does nc¢t go outside the range [0, P). If

TR e, Dol NN

the result of addition ¢xceeds the range, i.e., a higher-order digit
overflovwed, it is necessary either to brcaden tha range, or to

eliminate the consideration of cverflcw and take the remainder with

PRG0S

raspact to modulus P as the result of the operation.

Suppose that for a fixed system of bases which satisfies

condition (14) we know ttke representations c¢f the orthogonal bases in

the 0OPS

Bim[o, 0, 0 .., 0] ($=1,2,..,n).

We will consider the orthogcnal pusbers

a;B;E(ﬂ.O, ver s Oy %y 0)-..v0) (“=1, 2;..-v”)

(o & < )

The comparison sign has teen prcvided here, since the product a; B

can be larger than P. We will designate

TN ATT O ” ZERANF NG A2 SN~
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By = (0,5, ..., 0, %, 0,...,0)

Thus,

% B, = Bi,, (mod P),
0= B, < P.

We will find the represeacvaticn in the OPS for the nuabers B, .
In viav of condition (14), the nuacer a, < p; can serve as a value in

each of the digits with the Lases

.PQ'I P"'-l ’ .A... H Pu'.

Therefore, the calculaticn of the product a B, is reduced to
multiplication by a one-digit nusber, i.e., it is equivalent to «;
succassive additions. If we do not consider the overflov of the n-th
digit in this case, as a result cf the calculations ve obtain the

representation in the CPS for the number B, instead of «;B;

Let the representations obtained be

Bt:' [0: Oy.uay O b::..‘a bz.}.lniv cea y b:..n.'lv

X == ],2,...1/7{—1, i"—‘-‘l' 2y ... 1.

Nov we can use fcorsula (10) to convert the representation of the

nuaber A < P froe the SOK into the OPS. If

A = (alo 12’ eee 1,.)‘
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: : then
t @B, + %, B+ - + 2%, By =
B""X + B"‘: + BS’; + e + Bulu (mOd P).

1T

Again, if we do not consider possibla overflows in the n-th

highear-order digit when calculatingy the lattar sum, ve will

iamediately obtain a precise rapresentation of the number A in the

cPs.

Por an illustraticn, we will again consider example 3.

Pirst wve will find the representaticn of the orthogonal bases in
the 0PS

B, =1 3 4 3)
By, = [o, 2, 1, 2},
B, = [o, o, 1, 3],
B, = [0, 0, 0, 2].

wve will have

d=(24,635)=2B4+48B,+6By+ 3B, =
=Bu+st+Bss+Bu =
(2, 1, 2. 7|
fo, 3055 8]
+[o v, 6, 7]

[o, v, 0, 10]

4 =2 4,06, of.
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§3. Corrective Arithmetic Codes in the Residual Class Systea

In digital computers, ainfcrmation must ordinarily undergo a long
series of different tramsformaticns before the final result is
obtained. In order fcr this result to be reliable, extremely rigid
requirements are iaposeé on the reliability of digital computers.
Diffarent methods of ckecking are used tc prcvide the reliability cf
the operation of compruters. The use of ccdes with redundancy,

so-called corrective ccdes, is cocnsidered tc be the acst promising.

Corrective codes intended tor data transsission systeas are
widely known today. The sost popular are the Heming codes, which use
the "parity® method of ctecking. Ccdes suitable for checking
arithmetic operations were progcsed by Brown [3]. However, it is
difficult to use these ccdes in fractice because computers operate in
tosition systems of calculatica, whereas check cperations should be
made on residues. This ccantradicticn vill not take place if the

computer itself operates in tne residual class systes. I. Ya.

T e e
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Akushskiy [1] vas the first to draw attenticn to this situation,

racommending that the corrective properties cf SOK ke studied.

The codes considered below can be used fcr correcting errors

vhich arise during data traanssissicn and wvhen perforaing arithametic by

opsrations in the SOK.

de will consider the represeéntations

A=(¢p¢p---oau) (l)

to be a code combinatican, vhere the digits ay, az, e¢e.o @, can be
assigned as binary, like in the sultiposition representation. We know
that a certain vwhols nuasker frca the range [0, P) corresponds to each
representation (1!). We will use the representations (1) corresponding
to the nuabers included in a certain part of the assigned range

{0, P) for transaitting data or gerforming arithmetic operatioms.

This makes it possible tc correct the errors.,

We will assume that representations (1), which satisfy the

condition

P o= Pn- (2)

0= AL

are used for transmitting messages or perforaing arithmetic

operations.
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In this case, the nuaber A is uniquely defined by a
(n - 1)-digit representation (a;, @2+ eccey @p.;) (see (5), §V).
Therefore, the digit with the base p, can be considered to be ‘
radundant. According to Heaing, tne effectiveness of the code or the
degree of the drop in theé capacity of the channel is detefined as the
value R, equal to the ratio cf the vhols number of transaitted binary

syabols to the minimua numper of symbols necessary for transaitting

this same information,

We will assume that a binary channal is used for data
transaission. We will also assuse that the bases of the SOK
Pie¢e P2s ecey Pn are successive prine numbers. With this ceding,
[log,P.) # 1 binary sysbcls on tase p, > 2 are needed for
transaitting the number «,; ocne syabol is necessary for transaitting
the nusmber a,. The tctal number of binary symbtols necessary fcr

transaitting representations (messages) (1) vill be equal to
13" ([log, pl 1),
=2

and the minimum number of syabcls pnecessary fcr transaitting the sane

message vill be equal tc

H—=1

1+ ({log, p] + 1).
572

oy

$

=

e T ST e p T 1

ey
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We will obtain the follcwing relationship for the value of R:

n

T4 ) (logpl+ 1)
- |

P ) (llogepi +1)
g1 - "

Ve will evaluate this €xgression. e have

R=1+ {log, En) 1

B

+ 3 (log g1+

=3

vhea a > 3, obviously, i

R< 1+ 1%l =14 1081 0n + 1
n—1 !Og, (PI'P'-' e P,.__l)

log, p;

§=1

log, pu 1
= 1 —_— i ——
+ logg Pu ' log, P,

The inequality

P(:-l)/! <Px'/'z PN /’ﬂ—x = pP,.

is proven in number theory. Taking its lcgarithe, we obtain

‘l‘;—t‘ log, 24 < log, P,

orc

log, 9, 2
log, P, n—1

ﬁ Using this inequality, we will obtain




!

4

h

:
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¥.1

q

~ 2 1 "

R I — nd - . - 2 ‘l.
<t "n—1 + n— 1 108, pa (3) g

ok

We will study the ccrrective capabilities of the codes in

1 guestion with one redundaanr digit for base pye.

Pirst ve vill define¢ tne concept of arror. We wvill consider a
singla error to be the distorticn c¢cf any ona number of the n-digits
of rapresentation (1), wheraupon tae distorticn is limited only by
the value of the base. Weé will ccnsider a k-fcld error to be the

distortion of k numbers cf the representatiocn.

Let A = (a;, @z, <eceyp ayw) L@ the transaitted message; we will
introduce the designaticn A = (3,, T, ee., &) for the received

Eessage.

We will consider message X = (&, Tz, ..., a,) to be errcr-free

ir

oS AL P,

And if
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we will consider the ccrraspcnding repressentaticn to be erronacus.

e vill paint out that it is alvays true that 0 & A < P and, as

stipulated, 0 § A < E,.

If message (1) is traasaitted, in general, any of thae possible P
sessages can be received. dere En of thase will ke received as
error-free messages, afd P - P» - as errcnecus. Thus, the number

P - Pn shovws the total number or detectable pcssible errors. The
P —-P, Pn—1
]

P Pu
capacities of a code. 1t is interesting to calculate the number of

ratio can sServe as th? measure of the dataction

detected single, double, otc., €xrrcrs.

Ve will assume that the bases of the SOK are arranged in order

of increasing value, i.e..,

Pt<Pa< c° <P~°

Then the number Py, Pyy ece, P, will satisfy the inequalities

PA>P> - > P )

We will show that in tais case, the presence of the redundant

base p, is sufficient fcr detecting all single errors.

Theorem 1. Let A = (Xge Qo seey @y), 0.‘ A > P, be the
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transaitted message or tike precise result of performing arithasetic

operations in the SOK, and 4 = (a,, @z, e¢¢e, 3,) - the message

raceaived or the result of che calculation ottained in the S0OK. Then,

if @; = a; vhen i # k ard @y # a, (i =1 2, «.., D), ¥e have the
inequality

A =P,

vhich detacts the error,

Proof. First, ve will pcint out that the distortion of the digit
\:.(a?,,*,,) means the adéition of the value IB, to the number A, vhere
B. = (0' 0' seosy 0' " c' cse ey 0) 'ith the units of the k-th digit'

iaeo.

A= A+1B,(mod P), 0o <! < ps

but B, = sP’. vhere 0 < s < p,, vhich means that
A=4+is Py, (mod P).
But since Yr.=.gp Pwo<,<p, and )P, =p, ve obtain
. s
A=4+4rp, (mod P), where U < r < [,. Purther, we will point out that

vhen 0 £ A < Py, the ncaber A ¢ 13 is located in the range (0, P)
and, furthermore, we have (5).

Therefore, the inegualaty

e r—

K 2 RARITIRL T s (RN . DU e F R o
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A+ 7Py =D,

holds in the range [0, P). swhence it follows that

A=A+rPkéE”,

vhich also had to be prc¢ven.

We will look at an exampls. we will consider the bases tc be the
sane as in the examples frcm theé preceding sectioms: p, = 3, p» = 5,

Pz = 7, Pe = 11, P, = &,

BExample 4. Let A = 1t = (1, 1, 1, 1) be the transmitted message
and A = (1, 1, 4, 1) - the received message. Calculating the value of

A, wvo will obtain

A=(1, 1, 4,1)=1.38¢+41.231-4.330--1.2I0=2146=991>105;

vhich means that an erroneous message has been received.

The process of detecting the inaccuracy cf the representation
cbtained can be realized in the arithmetic unit operating in the SOK.
Actually, for this purrcse it suffices to ccnvert the representation
obtained into the generalized pcsition system with the same bases as

in this SOK (see (17), §%). If the higher-order digit of the CPS a,
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turns out to be equal tc zeroc, the representaticn is error-free, but
if a,, # 0, the representation oktained is erroneous. Thus, in the
exaample in guestion, tlte represeatation cf the number A in the OPS

has the fors

Ad=1403-+315+09.105,

so that a, = 9 # 0.

It is very obvious that ii we know the digit of the SOK which
contains the error, it is easy tc correct. Actually, if we ‘use Ay to
designate the (n - 1)-digit repesentation ottained from expression
(1) by subtracting the digit a,, in viewv of ccnditions (2) and (S),
ve will have A, = A whep Kk = 1, 2, ..., D. Therefore, if ve know that
the error occurred in the digit uith the nupber k, :k = Ay = A, In
crder to obtain the nusker A = A4, it suffices to subtract the value
Pp froa it until a nusler whica lies in the range [0, P,) is
obtained. If it is necessary tc deteraine the number a, in a device

operating in the SOK, weé proceed in the same manner as in §2 with the

detection of the undefined values of the foram 0/0.

The possibilities cof correcting a single error for a code with
cne redundant digit for rase p, are determined by the following

theorass.
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Theorem 2. Assume that 0 § A < P, and that vwe knov that oanly a
single error is possible i1n the received message
D = (Tye T2y ecey An)e L&t Ap = (T3, T2p ooe, Tore Typre ceeoly)
designate an (n - 1)-digit representation obtained by the subtraction
cf the number =,. Then, if {, =P, , the nuaber ay Oof the received

representation is arrcr-freee.

Proof. Pirst we will point out that the inequality :}_g P, is
possible when k < n, since we nave P, > F, in this case. Further,
inequality il » P, means taat thae (n - 1)-digit representatiocn of ii
contains an srroneous rusber. However, by definition cnly one error

is possibla; therefore, rumner a*.is errcr-free.

Corrolary. When the inegquality i; 2 Pn holds for the values

A =1, 2, ¢eep (0 - 1), the number of the n-th digit is erroneous.
Actually, according to the theorem, in this case the nuambers Xy
k=1, 2, eee (2 - 1) will be error-fraea, which means that the number

of the n-th digit «, will be arrcneous.

The case discussed in the corrolary is possible. This follows

fron theorenm 3,

Theorea 3, Suppose tnat only a single error is possible in the

B Pt

e
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} received message in A = (a;, Az, eoe, E;). If the value of 3

satisfies one of the irequalivies

P.EA<L P, (6)

l/\

cr

Pui(prmy— 1)+ P < ALP, (62)

the number of the n-th digit will re errcneous.

Proof. According tc the corrclary of thecrea 2, in case (6) it

will suffice to show that the eguation

A=

holds for values of k = 1, 2, cee, (0 - 1.

But these equations follow trca conditions (6), (5) and the

unigquaness of the rapresentaticn of the numbers of the rangs (0, Pk)

in the SOK.

#e will prove the thaorem fcr case (6a). We know that the
distortion of the digit a, means the additicn of the value r, P, to
the number A, vhere 0 < X § o, ¢ < L, < Eue OC, equivalently, the

value
Pp (P. — 'k)s

" : vl
T Py PRI 17 | T, 1 3077 Pt
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wherse
olk=m oL <K py

We will have
Pu-1<Pu—2< "'<P2<P19 .

vhence

Pt+Pi—Piy> - >P+ P —P.
Based on condition (6a), vwe can write
2—>P‘—Pn—1+})n>"'>P'—P1+Pu

or, in other worads

A> P (puy— 1)+ P> - > Py — D -i- P
Purthermore, it is otvicus that

Popa—DZ P~y o< bkZTu—~1, o<r, < ppy

therefore,

ASP,(by—r)--P, kemt,2,..,(n—1) 01 < fye

LRI T I

S d v ihiib 0 B "
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This aeans that none of tne numbers of the fornm

Ad+Pilpy—r), o= d<P, F= 1,2, ....(n — 1)
o r, by

can satisfy inaquality (6a). Consequently, it is impossibla tc have
an error in the digits witan puabers k = 1, 2, .ee¢ (B - 1); this is

equivalent to a confirsaticn.

Theoraa 3a. If wve also assumsa@ that there are no even nupkers
among the tases, the errcr will also be in the n-th digit when the
received message A satisfies the inequality

P Pegp il L0
2 2 2 2

The proof follows fiom the inegqualities

H—1 On

P <

2

—a<bkElp ity

We can approach the study of the correcting capacities of a code

vith cne redundant digit scaewhat differently.

Let
A = (2., ... &)

be tha transmitted messaga, and

e e A ———— e — ¢

’ P - . . i, .. e nld
AR % ¥ P A TNV PRt - - ¢
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A =1 Ly Koy ...y %n)

- the received message.

de will call the representation
A=-;l.—l'{=(‘-z:"—zl!-“—2.—z’l--0'-z‘ﬂ-——zn)

the distortion vector,
By definition,

A=-4-+J, where A = 0 woen 4 = A and A # 0 vhen A # A. If we obtain

an erroenous message A S Pns vwe can construct the tctal systeam of

possible distorting vectcrse.

Leasa 1. Let A 3 En be the received message. Then the nuaerical

values of all the possible distorting vectors arae

A, d—1.d—2. ..., d— (@, — 1. (8)

proof. Actually, if A > P, is the message obtained, ve are
justified in assuming that any cf the P, errcr-frese representations

vith numerical values of 0, 1, %, eee¢, P, - 1 wvas transaitted.

SRR e Rt i S TmTed e m eenv b e s = e

. « " . v“"“ 4
_ N gt A g s A T At
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If the representatican
o = (Ov U! ses ¥ 0)

vas transajtted, the distorting vector A, will obviously be the

vactor A itself

If th3 message

1 =(Iv h...yl),

vas transmitted, the distortiay vector A, will te the vector A - 1,

sinca

A=AL 3 =14+ (d—1).

Continuing in this fashion, we oktain series (8).

In the future, we will designate systea (8) as

Ao, A"".'APA— 1 (9)

and we will call it the total system of distortion vectors.
Lemma 2. If the errcneous message A » Bn is received, there is

precisely cne vector ir tne total systam of distortion vectors (9) in

vhich the first (n - 1) numbers are equal tc zero, while ths number




e o st TP

DoC = 1000 EAGE 43

of tha n-th digit is ncrzerc.

Proof. Since the nusbers (9) foram the total systeam of resainders
for modulus P,, they ccntain precisely one nuaber which is a aultiple
cf P,: we will designate it as 3. The first (m - 1) digits of the
vector A are obviously equal to zero; furthermore, because of
condition P, ¢ A < P, if even one ¢f its digits is nonzero, the last

digit of the vector 2 is nonzerc. The lemaa is proven.

It follovs from leasa 1 that the prcbles of correcting the error
in the message obtained can be sclved by the correct selaction of one
of the possible distorticn vectcrs (9). If this selaection is sade, ve
vill obtain the corrected aessage in the fors of the difference
A=1 - A. If ve assume the fossibality of only single errors, it is
logical to begin the probleam of correcting the erroneous message vith
the salaction of the vectors frca system (9) which have only one
nonzero number. It fcllcws frcs lesma 2 that there is always one such
vector with a nonzerc nusber in the n-th digit in complete systea
(9)« This means that we can always assume the presence of a single
error in the last digit., The ccorditions ¢f theorem 3 indicate certain
ranges of the value of A for which the tctal systea of vectors (9)
contains one vector each with cne nonzerc digit., If the numher of
these vectors in systes (9) turrs cut to be greater than one, the

correct selection of tle¢ necessary distortion vector can only be made

SRR S S
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vwith certain additional assuspticns (®.g., the assumption of the
impossibility of an errcr in the n-th digit), or on the basis of

probability consideraticses.

Nov ve will assume taat the redundant tase p, satisfies the

condition

Pabicp 1=i< i<, (10)

and ve will study the distributioa of distorting vectors vwith one

nonzero digit in the racce [0, E).

Remenber that the vectors sith a (n - 1)-th zero digit have
puserical values vhich ars amultiples of R‘=§, vhile the total
) y :

system of distortion vectors (9) £ills a range of numbers of length

T

Leama 3. With condition (10), not more than one vector which is
a sultiple of P;y L = 1, 2, ¢o., (a - 1) can fall in each range of
length P,.

Proof. To prove this scateaent, it will cbviously suffice to

show that




S
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R ik

vhen

igdej, i<n ‘<< o<k p, oIy,
We have
. P P P
l‘Pn"'lP,=k—-—-—'-’-——=—-—-(kP~l i) - 1y
; - 3 Iy j b (1)
F It has been stipulated that Dn > pi 0y therefore
4 P
-——>—‘-"= »
pep; P
Purthermore, since the numpers k and 2 satisfy the conditibas

0<k<p;p 0<Z<E,;, and p, and p; are ccprime vhen i # j, ve
obtain

kpl'—lfn‘*o'

Fhence it also follows from eguation (11) that

IkP." IP-]I > P.‘kPl —IPJ >Pn

vhich had to be proven.

Theorem 4, We will assuma tpat the error-free transsissicn of
the numbers of the n-th digit is provided. When there is cne
rsdundant digit for base p, which satisfies ccandition (10), the

singls error in the message réceived can always be corrected.

L A M i e Tt el s i
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Proof. Por the prcct it suffices to note that according to leanma
3, only one number vhich is a mulctiple of 39 (i # n) can exist aaong

the numbers of the wholqe system cf distorting vectors (9).
Lemna 4, We will assume that condition (10) is satisfiad.

The coapleta system of distorting vectors (9) contains two
different vectors with a (o - 1)=ta zero digit cnly when the value of

A for which it is comprised Lbeicngs to one of the ranges of the tyre

[k Pi; & P 4 P,), (12)

i=x,2,_,,,(n-—-1), k€=l'2,...,P¢—I.

Proof. Pirst we will show that system cf vectors (9) contains
tvo vectors with a (n - 1)-th zero digit. Accordiang to leama Z, onea
vector vhich is a nmultiple of P, is always present in system of
vactors (9) . It also ccntains a vector which is a aultiple of P
(i # n), since the system of vectors (9) which fills the interval of
langth P, has the point A, which lies in interval (12) (also length

Pp) for its right end, whbile its left end is the vector k;P,.

e will demonstrate the Opfcsite. If the systea cf distcrtion
vectors (9) contains a vector of the fors k;P;, (i # n) instead of a

vactor vhich is a multigle of P,, the value cf X = 4, lias to the

right of the point k,P; at a distance which dces not exceed P,.

s s e s ot o — e+ s ———— !
-

e

o

T T S
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Therefore, 2 lies in tte range ¢i the form (12),

de will use D to designate tha set of points belonging to all
the ranges (12).

Thaorem 5. We will assusa that conditican (10) is satisfied, and
that only a single errcr is possible in the received message A Then,

if 1 does not belong tc set D and A 3, P,, the number of the n-th

digit is erroneous.
Proof. The prceof folicws frcm lemmas 4 and 2.

This theorsas is a generalization of theores 3 with the

addit ional condition (10).

de will study the pcssibility of detecting doukle errors for a

code with one redundant digit gn.

Remember that wve ccpsider a dcuble error to be the simultaneous
distortion of two different nuacers of a reprasentation by a value
vhich is lisited to the correspcnding base. This means that if

A= (ay, @y eeey a,) is the transaitted message and

2 = (&4, eeee @y i3S the received message with a double error, then

T

AR Y
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TS /l '—I‘ A,‘p

vhere

A‘l = (U’ Oy vvu s Oy 5!" Oy oev s O a-‘, Cy e s ())

s

(ai *0: 3/ * Q)

i{s the distorting vectcr.

Lemma 5. Suppose that (n - 2) digits have teea fixed in the

representation

A = (% %2 oo %p)

and two digits, €.g., o, aad x; (1 < j). assume all possible values
oSa<p, oS« <p) 1Then the nuserical values of the

representations obtained are distributad in p;pj nonintersecting

intervals
[k Py; (k= 1) P3),
vhere
p
P = (13)
g Pi?; ’

k = 0,1: 2y..., (pt'Pj.__ l)‘

Proof. Pirst of all, it is obvious that the PiF; representations

defined in the conditicns are pcssible ip all. We will show that aone
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of the intervals (13) can raceave two differemt such representations.

Indeed, let
4= (“p e s Bimgy By Zipgy ooy Ljgs By Fingy eeey )

and

Ad=(a,.., Bigs Zir Zigys oo Fiogy Kjy Bigg, e, )

whereupon at least ona of the differencas (3 = z; — &, 5; =a?,-a,) is

QONZ&eroQe.

We will consider tike¢ difference

~

A— A =(0...,0, 85 0,...,0, 3 O ...» o)/

It is obvious that the number A4 - A # 0 can te divided by Pi; e ieee,
IT - ) = SP.,» vwhere 0 < s < P-:’Pi' This means that the distance
batween the numbers A and A is not smaller than tha length of each of
the intervals (13). Thos, all EiF; numbers fall in differeant

intervals (13), vhich Rkad to be fprcven.
#e can obtain a theorea analoyous to thecrem 4 from this lemaa.

Theorea 6. We will assume that the error-free transamission of
the numbers of the n-th digyit nas reen provided. Then, vhen there one
redundant digit with resgact to Lase p, vhich satisfies condition

(10), the double error in the meéssage received can alvays be

=y

T = P GRpR oA 1T

e i




DOC = 1000 EAGE 50

dstected.

Proof. The proof follows from lemma 5, sinca because of

condition (10), we have

P.',' =

P P -
Pin -'_:-aP" and a»> Pn'

and this is equivalent to a coniiraation.

Novw wa will compute th3 nuater of detactable dcuble errors in

the presence of one redundant digit for the largest of the bases pjp.

de will considar the numper of digits i and j to be fixed, with

i< ij.

The set of numbers 3 correspcnding to all possible values of the

distortion vectors 4;; cLviously consists of (p. - 1) (p; = 1)

elements. According to leama 5, all of these nuabers fall in

differsnt ranges of length Pje

The erroneous representations with double errors which fall ia

the wvorking range [0, F,) are undetectable.

4a will calculate their nuster. Thare arg

Sij = [ﬁ] = [ﬂ.]
P‘/ Pn

oD T TR e P
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nonintersacting ranges of langth P€3 in range [0, P ). Here, if
j =1, s;n=p;, and if j ¢ n, Si; < pg and s;; nonintersecting
ranges of length P;; dc not complately ccver the interval [0, Pn).
Whenca it follows that the numerical values of the transmpitted

messajes A (A < P,) telcng to cne c¢f the intervals

[(k— I)P-’j; kpu), k= 1,2, ... 54,
cr

[5-',-' P.'j; P,).

Now it is already clear that taers are not less than s < 1 and not

msore than sé; distorticn vectors YT l2aving the numbar 2 =A ¢ Ay
in ths range [0, P, . Por example, there will be s; if j # n and A
is located in the interval (s Pi» ) , while thers vill be s, - 1 if

A=l Py (0 SIS s

Thus, the nuaber c¢f detectable double errors will not be less

than

(B~ D) () = 1) — 5, = (5 — 1) (p; — x)—[——’;’f].

This means that out of the total nuamber cf possible double
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errors .

, Z 0i — 1) (p; — 1), A
‘ 18i</sn

not less than K

: > ((pf ~ 1)~ x)—[%’;]);

1gi<jsn
=\ (,b;—l)(p--l)—..‘z"_‘b.i.).
> ( s = — 2L

19i<;<n

will be detectable. v

de will reduca this aexprassion to a form more convenient for

calculation: 1

Z(Ps - 1) (pj—1)— ;” Zpipl. =

1si</sn 1S5i<j g0
(=) po= Y otr+() =
"xsi</'sn tSi</an i}
n—1

-H(l-;%)z.f’-‘ ” p,~+(;‘)—<n—x>i:p.“- (t5)
=1 =it i=1

=5

Pootnote: lHere (;) is the bincaial coefficient. End footnote

The last term vas oktained here as a result of the follcwing

transformations:
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!
;
. o
: 18i<jsn J=r =1 -

n—1

l ' =Zpi§x+; " —=Np=(n—1) Zﬁs.

i
e o o ey g e i
s —— - e A

It suffices to find the percentage ratioc c¢f numbers (15) and

; (14) in order to obtair an idea cf the propcrtion of detectable

! doubls errors.

de computed this ratio witi tne assuapticn that the codes in
question are us2d in a ccmgputer cperating in the SOK with an upper

boundary of the numerical range cf 101:-1012, The siample numters

2, 3,5 7y 1L, 13, 17, 19, 23, 29. 30, 37»

ware approximately used as tbe rasqs, where wve considered the base 37

to be redundant. The calculaticns showed that with this coding,

96.90/0 of the double errors can be detected. This figure Adiffers

insignificantly froa “P - which serves as the measurs c¢f the

detection capacities of the code in question. In this case, ve vill
have

37 =1 6
_)Z__. - _3_. = 0,9729.

37 37 1e0e, 57.290/0.
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Nov we will consider the ccrrective caracities of codes with two

redundant bases with respact to the largest digits p,., and pne

Pirst, ve will shcw that a ccde with tvwo redundant digits

crovides the correction c¢f all siagle errors.

Theorea 4., Let A = (@;, @24 eeey a,) be the transaittsd nmessage
or the precise result cf the execution of arithaetic operations in
the SOK, and A = Ty, Tz, eeey @y) - the received message or the
result obtainad from the calculaticns in the SOK. Then a single errcr
can alvays be corracted if tha ruserical values A of the transaitted
messages or the precise results c¢f the calculations in the SCK

satisfy the inequalities

0SS A< Pypyct Pucee

Proof. We will consi&e: all gossible (n - 1)-digit
representations A,, comprised frca the message received by
subtracting one nuaber (tnere will be n of theam). If there are no
errors in the message received, for all values of i = 1, 2, .o, 1

thers will be

A=di= AP Pyvee s Pacye

If the nessage received ccntains a single error, then all the

(0 - 1)-digit representations ot i; axcept one vill contain cne

e —

BEAE ~ orics
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erronaous nuamber:; therefcre (thaecram 1), the inequality b

.

vill be satisfisd for the (o - 1)-th value of i, and for only onme

value of i, e.9., for {1 = k, will f
. 2, < bypr e Puma

The latter corresponds tc the cage when the errcneous number has been r

subtracted; but then, since 4 < [y1*P2y eees Pp-2, ¥We oObtain

T =4 =d- g

Now we can already ticd thae true value cf the number ape In

crder to dc¢ this, it suffices tvc find the remainder from the division

of Ap by ppe

The calculation of tane values of the (n - 1) -digit
representations of i; is not a comglex problem. If the value of X has
already been calculated, and ve sust begin with this, then

A4 =T—,p, where r=[-—-“ }

Thus, in order to calculate tae values of A, it suffices to subtract

the number P; from A urtil a nuater lying in the range [0, P;) is
obtained.
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The presence of twc redundant digits is also sufficient for
detecting any double errcr. Actually, in the fresence of a double
error, at least one cf the {a - 1)-digit representations will contain
a singla error and, there¢iore, the numerical value of K;

corresponding to it will pe cutsidé the range [0 P;*P2 eee Pn-2Je

Again we will assume tnat a binary channel is used for data
transmission and we will estiasate the nusber c¢f redundant binary
symbols for a code with two redundant digits, i.e., for the code of

corractive single or detectatls dcuble arrors.

Remeabar that in the codas in guestion, a single error means the
possibility of distorticn of nct cnly one binary syabol, but also
distortion of the number a; by a value gp; - 1, vhich can correspond

to the distortion [leg,r;] of thé Linary syabels.

For the codaes in question, the number of redundant binary

sysbols is equal to

r == [logy paay] + [log, pu] + 2.

In order to estimate this nusoer as n- =, ve will use the asymptotic

formula of analytical rusber cthaeory

EASERNE) 15 Jiok. T ALK VS SR PRI T

T

ey
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. )
- Hm 2 -
Pa~nlnn, i.e., fiwece 210N "

Tharefore,

log, P “",1932 n <+ log, In n.

Thus, as n-+ =, we obtain

7 ~ 108y Puey Dn ~ l0gy 2 (2 — 1) + log, Inzln(n— 1))

{ cr

; r ~ 2 log, n.

!

%' I vill take this cpportuanity to thank to I. Ya. Akushkiy for his
i

constant attention to sy work and bkis helpful ccasents.
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